

绥净仪表只为碧水蓝天

河南绥净环保科技有限公司

HENAN SUIJING ENVIRONMENTAL PROTECTION TECHNOLOGY CO., LTD

前言

GNST-YD614 在线盐度控制器,采用工业级标准设计,稳定可靠,是由独 立研发生产,集多种参数监测功能于一身,该设备能够自动识别不同类型的数字传感 器, 内置气压传感器,真正做到了简单易用。

该设备支持一路 RS485 输出,一路 4-20mA 输出,光电隔离,抗干扰能力强。一路RS485 数字输出,方便用户进行组网。两路带隔离的继电器输出,用 户可以设定继电器功能,从而来控制设备的开关状态和开关周期。

主要适用于以下场合: 污水处理、环境监测、原水检测及发酵等领域。 此文档适合的变送器硬件版本号为 1.0,软件版本号为 1.0 及以上。

二、安装......7 三、开机......9 四、主菜单......14 五、气压设置......14 六、校准设置......15 6.1 校准功能选择界面......15 6.2 4-20mA 校准界面......15 6.3 溶氧校准......16 6.3.1 校准选择......16 6.3.2 一点校准......16 6.3.3 两点校准......17 6.4 盐度校准......18 6.4.1 校准选择......18 6.4.2 一点校准......18 6.4.3 两点校准......19 6.5 电导校准......19 6.5.1 校准选择......19 6.5.2 一点校准......19 6.6 浊度校准......20 6.6.1 校准选择......20 6.6.3 一点校准......21

目录

6.6.4 两点校准	22
6.7 叶绿素校准	22
6.7.1 校准选择	22
6.7.2 一点校准	
6.7.3 两点校准	23
6.8 污泥浓度校准	23
6.8.1 校准选择	23
6.8.2 一点校准	24
6.8.3 两点校准	24
6.9 氨氮校准	25
6.9.1 校准选择	25
6.9.2 一点校准	25
6.9.3 两点校准	25
6.10 蓝绿藻校准	
6.10.1 校准选择	26
6.10.2 两点校准	26
6.11 水中油校准	27
6.11.1 校准选择	27
6.11.2 一点校准	27
6.11.3 两点校准	
6.12 COD 校准	28
6.12.1 校准选择	
6.12.2 一点校准	
6.12.3 两点校准	
6.13 pH 校准	
6.13.1 校准选择	
6.13.2 三点校准	

6.14 ORP 校准	
七、 4-20mA 设置	
7.1 功能进入	30
7.2 使用说明	31
7.3 设置范围说明	31
八、盐度设置	
8.1 功能进入	32
8.2 操作说明	32
九、警告设置	
9.1 功能进入	33
9.2 操作说明	33
9.3 设置范围	33
9.4 报警显示	33
十、继电器设置	
10.1 功能进入	
10.2 操作说明	
10.3 功能说明	35
十一、恢复设置	
十二、变送器对外输出	
十三、按键功能列表	

一、概述及技术指标

产品特点

- 自动识别,即插即用,支持所有数字传感器
- 一路 4-20mA 输出, 一路 RS485 数字输出
- 带继电器控制,用户可以设定报警上下限和周期
- 工业级标准,输出隔离,抗干扰能力强

技术参数

参数类型	数值
型号	GNST-YD614
外形尺寸	144*144*115 mm
显示	77*53 mm
重量	0.8kg
操作温度	0~55℃ 须避免阳光直射
防护等级	ABS 壳体,IP65
环境湿度	≪80%
供电电源	110~220V AC
变送输出	1 路隔离的 4~20mA 输出, 1 路数字输出, 两路继电器输出
温度/气压补偿	自动
安装方式	壁挂或盘面安装(开孔尺寸 138*138mm)

背板连接介绍

如图 2.1 为背板示意图,如图上 P1,P2,P3,P4 为连接插件,出厂时已连接,为防呆插件。用户使用时只需要连接 AC_IN、Relay1、Relay2、4-20mA、Sensor、Host 对应接线端。

AC_IN 为 220V 接入端。

Relay1、Relay2为继电器接入端,默认继电器为常闭。

4-20mA 为 4 到 20mA 的输出端。

Sensor 为传感器接入端。

Host 为上位机通信接入端。

详细信息描述见表 2.2。

图 2.1 背板示意图

序号	符号	描述	注意
1	AC-N	交流电源(零线)	
2	AC-L	交流电源(火线)	
3	GND 블	设备地, 需接大地	
4	Relay1 NC	常闭	
5	Relay1 CO	继电器公共端	
6	Relay1 NO	常开	
7	Relay2 NC	常闭	
8	Relay2 CO	继电器公共端	
9	Relay2 NO	常开	
10	5 V	连接探头电源	溶氧,浊度,电导、pH、叶绿素、水 中油,蓝绿藻,盐度,污泥浓度, ORP 可接 5V 电源
11	Sensor GND	连接探头 GND	
12	Sensor 485A	连接探头 485 接口 A 信号线	
13	Sensor 485B	连接探头 485 接口 B 信号线	
14	12V	连接探头电源	适合所有探头, 其中 COD, 氨氮必 须接 12V 电源
15	mA-	4-20mA 输出负极	
16	mA+	4-20mA 输出正极, 电流输出	详见 7.3
17	HOST 485A	连接 Modbus 总线接口 A 信 号线	
18	HOST 485B	连接 Modbus 总线接口 B 信 号线	
19	HOST GND	接地	

表 2.2 接线线性定义表

注: 依次安装传感器, 4-20mA 输出线缆和 AC 电源。完全装配好后, 上电。

传感器线缆定义

线颜色	信号定义
黑色	GND
绿色	485_A
白色	485_B
红色	VCC
裸露线(棕色)	屏蔽信号

三、开机

610-B 在线通用变送器作为在线监测设备,暂时未设置电源开关。开机时 将电源线与 610-B 在线通用变送器的电源接口连接,电源插头连接市电,则设备 开始工作。设备进入测量界面,开始正常采集各项参数。

测量界面

本设备能够实现传感器类型的自动识别。设备连接不同类型的传感器进入不同的测量界面。

溶氧测量界面

图 3.1 显示了当前环境下溶氧探头测量到的溶氧值(mg/L)、温度(℃)以及气压值(kPa)。

	DO		DO	
	5.67	mg/L	90.67	%SAT
	100.67	kPa	100.67	kPa
	24.76	്	24.76	$^{\circ}$ C
1				

图 3.1 溶氧测量界面

图 3.2 溶氧百分比显示界面

长按 UP 键 5 秒释放,溶氧可切换显示单位为百分比(%SAT),图 3.2 显示 了当前环境下溶氧探头(即 DO 探头)测量到的溶氧值(%SAT)、温度(℃) 以及气压值 (kPa)。

COD 测量界面

图 3.3 显示了当前环境下 COD 探头测量到的 COD 值和温度 (℃)。

COD	
6.78	mg/L
100.67	kPa
23.24	°C

TOC	
2.23	mg/L
100.67	kPa
23.24	°C

图 3.3 COD 测量界面

图 3.4 TOC 测量界面

如图 3.4 所示,按下 Enter+Up 键,可切换显示为 TOC。

pH 测量界面

图 3.5 显示了当前环境下 pH 探头测量到的 pH 和温度 (℃)。

图 3.5 pH 测量界面

浊度测量界面

图 3.6 显示了当前环境下浊度探头测量到的浊度(NTU)和温度(℃)。

TUR	
2.87	NTU
100.67	kPa
23.24	°C

图 3.6 浊度测量界面

电导测量界面

图 3.7 显示了当前环境下电导探头测量到的电导值(uS/cm)和温度(℃)。 若是高量程,则单位是 mS/cm.

图 3.7 电导测量界面

叶绿素测量界面

图 3.8 显示了当前环境下叶绿素探头测量到的叶绿素值(ug/L)和温度(℃)。

CHL	
200.01	ug/L
100.67	kPa
23.24	°C

图 3.8 叶绿素测量界面

水中油测量界面

图 3.9 显示了当前环境下水中油探头测量到的水中油值(ppm)和温度(℃)。

OIW	
15.01	ppm
100.67	<u>kPa</u>
23.24	$^{\circ}$ C

图 3.9 水中油测量界面

污泥浓度测量界面

图 3.10 显示了当前环境下污泥浓度探头测量到的值(mg/L)和温度(℃)。

Sludge	
15.01	mg/L
100.67	kPa
23.24	$^{\circ}\!$

图 3.10 污泥浓度测量界面

盐度测量界面

图 3.11 显示了当前环境下盐度探头测量到的盐度(ppt)和温度 (℃)。

Salinity	<u></u>
2.87	ppt
100.67	kPa
23.24	°C

图 3.11 盐度测量界面

氨氮测量界面

图 3.12 显示了当前环境下氨氮探头测量到的氨氮(mg/L)和温度(℃)。

NH4N		NH4N	
15.01	mg/L	4.6.	
100.67	kPa	100.67	kPa
23.24	°C	23.24	°C

图 3.12 氨氮测量界面 图 3.13 氨氮 pH 测量界面 长按 UP 键 5 秒释放,可切换显示为 pH,如图 3.13。

蓝绿藻测量界面

图 3.14 显示了当前环境下的蓝绿藻探头测量到的蓝绿藻和温度 (℃), cells/mL 简写为 cs/mL。

图 3.14 蓝绿藻测量界面

ORP 测量界面

图 3.15 显示了当前环境下 ORP 探头测量到的 ORP 值 (mV) 和温度 (℃)。

ORP	
15.01	mV
100.67	kPa
23.24	$^{\circ}\!\mathrm{C}$

图 3.15 ORP 测量界面

温度切换显示

长按 DOWN 键 5 秒后释放,温度切换为℃显示,图 3.16 为切换后的溶氧显示界面。

Salinity	
2.87	ppt
100.67	kPa
73.24	°F

图 3.16 切换后 ₽显示界面

四、主菜单

按 Setup 键,进入主菜单,按 UP/DOWN 键,切换主菜单功能键,包括: Barometric(气压)、Calibration(校准)、4-20mA、Salinity(盐度)、Alarm(告警)、 Relay(继电器)、Reset(复位)。

五、气压设置

气压设置是对变送器内置气压传感器进行校准,是一点校准。

在图 4.1 的界面,按 Enter 键,进入气压设置界面,如图 5.1 所示为气压设置界面。按 up/down 调整数值,按 esc/enter 切换输入位置,输入当前标准气压值,以当前气压为 101 为基准示例,图 5.2 为输入 101kpa 气压后的显示图。

图 5.1 气压设置界面

图 5.2 为输入 101kpa 气压后的显示

按 enter 键,设置成功,则显示图 5.3 后,返回功能选择界面,设置失败则显示 Fail,如图 5.4 所示

图 5.3 显示 success 界面

图 5.4 为设置失败显示界面

六、校准设置

6.1 校准功能选择界面

进入校准界面有两个方式,方式 1,在测量数据显示界面,按 Cal键,即可进入校准选择界面,方式 2,在功能选择界面,选择功能 Calibration,按 enter 键进入校准选择界面,图 6.1 为校准选择界面显示图。

图 6.1 校准选择界面显示图

在校准选择界面下,有如图 6.1 所示的 5 个选项,包含 4 到 20 毫安的校准, 零点校准,一点校准,二点校准,三点校准,当连接不同的探头时,会自动识别可 选择的校准功能,如不可选择的功能在切换的过程中会自动跳过选择。

6.2 4-20mA 校准界面

将选择条移动到 4-20mA 选项,按Enter 键进入 4-20mA 校准界面,图 6.2 为 4mA 校准输入,图 6.4 为 20mA 校准输入。

在图 6.2 状态,输入测得的实际电流值,UP/DOWN 调整输入值,Enter/Esc 切换输入位置,如图 6.3 所示,以测得 3.95mA 为例。

图 6.2 4mA 校准输入

图 6.3 4mA 校准输入 3.95

按 Enter 键,进入 20mA 输入,如图 6.4 所示。在此界面下,测得实际输出 电流值,以测得 19.08 为例进行输入,图 6.5 为输入后界面。

图 6.4 20mA 校准输入

图 6.5 20mA 校准输入 19.08

按 Enter 键确认校准,成功则显示 Success 后返回上一级菜单,若失败则 显示 Fail,不返回上级菜单。

6.3 溶氧校准

6.3.1 校准选择

溶氧支持一点校准和两点校准,其余选项无法选择。

6.3.2 一点校准

选择 1 点校准选项,进入一点校准界面,如图 6.3.2.1 所示。

在此界面,输入需要校准的目标值,一点校准,建议设定溶氧的目标值为 100%sat,按 up/down 调整数值,按 enter/esc 确认或者退出。

50		D	0			
1 - point						
0	0	0	0	•	0	%SAT
Enter:Select Up:+					Set Dow	up:Exit n:-

图 6.3.2.1 进入一点校准界面

按 Enter 进入下一步,图 6.3.2.3 为开始校准界面,将 DO 探头放入对应输入值的标液中,数据稳定后,按 Enter 键确认,如果校准成功则提示 success!,如果校准失败,则提示 Fail!,校准值自动还原为初始值。

图 6.3.2.2 100%SAT 输入

图 6.3.2.3 开始校准界面

6.3.3 两点校准

选择两点校准功能选项进入两点校准界面,先输入第一个校准点进行校准, 如图 6.3.3.1,同一点校准,完成后按 Enter 确认,输入第二个校准点进行校准, 如图 6.3.3.2,将 DO 探头放入对应输入值的标液中,数据稳定后,按 Enter 键 确认,同样校准成功显示 Success,校准失败显示为 Fail。

溶氧两点校准,建议第一点选择为 100%SAT,第二点选择为 0%SAT。

图 6.3.3.1 第一个校准点输入

图 6.3.3.2 第二点输入校准

6.4 盐度校准

6.4.1 校准选择

盐度探头支持两种校准方式,一点校准和两点校准,通过校准功能选择菜单 可以选择一点校准和两点校准。

6.4.2 一点校准

当选择一点校准功能后,首先需要输入校准值,一点校准,校准值不能使用 零值,如图 6.4.2.1 所示。在输入校准值后,将跳转到如图 6.4.2.2 所示的校准 进行界面,显示当前采样数据,将盐度探头放入对应输入值的标液中,等待跳动 数据稳定后,按 Enter 键完成校准。按 Esc 键退出校准。

Salinity 1 - point							Salir 1 - point	nity 20. Oppt
0	0	0	0	•	0	ppt	18.	89
Enter:Select Up:+					Setu Down	up:Exit n:-	Press Enter Enter:Select Up:+	: Confirm Setup:Exit Down:-

图 6.4.2.1 盐度探头校准输入

图 6.4.2.2 盐度探头校准进行界面

如果校准成功则提示 success!,如果校准失败,则提示 Fail!,校准值自动 还原为初始值。

选择两点校准功能选项进入两点校准界面,先输入第一个校准点进行校准, 如图 6.4.3.1,同一点校准,完成后按 Enter 确认,输入第二个校准点进行校准, 如图 6.4.3.2,将盐度探头放入对应输入值的标液中,数据稳定后,按 Enter 键 确认,同样校准成功显示 Success,校准失败显示为 Fail。

图 6.4.3.1 盐度第一个校准点 "Oppt"

图 6.4.3.3 第二个校准点 "20ppt"

6.5 电导校准

6.5.1 校准选择

电导探头支持两种校准方式,一点和两点校准,如果是低量程探头,建议选用 146.5uS/cm 的标准溶液校准,如果是高量程的探头,建议选用 1413uS/cm 的标准溶液进行校准。

6.5.2 一点校准

选择一点校准功能后,进入一点校准标准值输入界面,如图 6.5.2.1 所示。

输入完成后,此处以 146.5uS/cm 为标准进行校准,一点校准,校准值不能使用零值,按 Enter 进入校准数据显示界面,如图 6.5.2.2 所示。

将电导探头放入对应输入值的标液中,在数据稳定后,按 Enter 键结束校准,按 Esc 退出校准。如果校准成功则提示 success!,如果校准失败,则提示 Fail!,校准值自动还原为初始值。

图 6.5.2.1 一点校准输入界面

6.5.3 两点校准

CT - point 146. 5uS/cm 1 Enter Confirm Press Enter:Select Setup:Exit Up:+ Down:-

选择两点校准功能后,首先进入一点校准值输入。此处第一点以 0 值为例, 先输入第一点 0, 如图 6.5.3.1 所示, 同一点校准, 完成后按 Enter 确认, 输入 第二个校准点进行校准,如图 6.5.3.2 所示。按 Enter 键进入第二点校准数据显 示界面,将电导探头放入对应输入值的标液中,等待数据稳定后,按 Enter 键结束 校准,同一点校准一样如果校准成功,则显示 Success! 如果校准失败,则显示 Fail! 。

图 6.5.3.2 两点校准第二点标准值"146.5"

6.6 浊度校准

6.6.1 校准选择

浊度探头支持三种校准方式,零点校准、一点校准和两点校准,通过校准 功能选择菜单可以选择一点校准和两点校准。

图 6.5.2.2 校准数据显示界面

当零点校准功能项被选择后,进入零点校准界面,如图 6.6.2.1 所示。

将浊度探头放入对应的ONTU的标准溶液中,等图6.6.2.1所示的数据稳定后,按 Enter 键完成校准,按 Esc 退出校准,如果校准成功则提示 success!,如果校准失败,则提示 Fail!,校准值自动还原为初始值。

6.6.3 一点校准

在功能选择界面,选择一点校准后,进入一点校准界面,输入需要校准的目标值,一点校准不能使用零值进行校准。以 100NTU 输入为例,UP/DOWN 调整输入值,Enter/Select 进入和退出,如图 6.6.3.1 所示。

按 Enter 进入浊度一点校准数据显示界面,如图 6.6.3.2 所示,将浊度探头放入对应输入值的标液中。等待数据稳定后,按 Enter 完成校准,同零点校准一样,如果校准成功,则显示 Success!,如果校准失败,则显示 Fail!。

图 6.6.3.1 浊度校准 100NTU 输入

图 6.6.3.2 浊度一点校准数据显示界面

图 6.6.2.1 零点校准界面

当选择两点校准功能后,首先进入两点校准第一个校准点校准值输入,以 第一个校准标准值 0 为例进行输入,如图 6.6.4.1。同一点校准,完成后按 Enter 确认,进入第二个校准点输入,以 100NTU 为例,进行输入,如图 6.6.4.2 所示。 将浊度探头放入对应输入值的标液中,等待数据稳定后,按 Enter 键结束校准, 如果校准成功,则同零点校准一样,显示 Success!,如果校准失败,显示 Fail!

		T	UR							TI	JR			
2 - points					Firs	t <mark>Point</mark>	2 - poin	ts					Secon	d Point
0	0	0	0	•	0	NTU		0	1	0	0	•	0	NTU
Enter:Select Up:+					Setu Down	p:Exit :-	Enter:Se Up:+	lect					Setu Down	p:Exit :-
图 6.6.4.1	油周	度第-	一个,	校准	点"0	"	图 6.6	6.4.2	浊质	医两点	<u></u> 気校7	隹第	二点"	ʻ100 <i>"</i>

6.7 叶绿素校准

6.7.1 校准选择

叶绿素探头支持两种校准方式,一点校准和两点校准,通过校准功能选择菜 单可以选择一点校准和两点校准。

6.7.2 一点校准

选择一点校准功能后,进入一点校准校准值输入界面,如图 6.7.2.1 所示, 以 100ug/L 为校准输入为例, Enter/ESC 切换输入位置, UP/DOWN 调整数值。按 Enter 键进入一点校准数据显示界面,如图 6.7.2.2 所示。

将叶绿素探头放入对应输入值的标液中,等待数据稳定后,按 Enter 键结束 校准,按 ESC 退出校准,如果校准成功则提示 success!,如果校准失败,则提 示 Fail!,校准值自动还原为初始值。

图 6.7.2.1 探头一点校准校准值输入

图 6.7.2.2 叶绿素一点校准数据显示

6.7.3 两点校准

选择两点校准后,进入两点校准的第一个校准点输入界面,以第一个校准标 准值 0 为例进行输入,如图 6.7.3.1。同一点校准,完成后按 Enter 键进入叶绿素 两点校准的第二个校准值输入界面,以 100ug/L 为校准输入为例,如图 6.7.3.2 所示。将叶绿素探头放入对应输入值的标液中,等待数据稳定后,按 Enter 键结 束校准。同一点校准一样,如果校准成功,显示 Success!,如果校准失败,显示 Fail!。

图 6.7.3.1 两点校准第一点校准值"0"

图 6.7.3.2 两点校准第二个校准点"100"

6.8 污泥浓度校准

6.8.1 校准选择

污泥浓度支持两种校准方式,一点校准和两点校准。

选择一点校准后,进入一点校准的校准值输入界面,如图 6.8.2.1 所示,以 100mg/L 为例,按 Enter/ESC 切换输入位置,Up/Down 修改输入数值。按 Enter 进入一点校准的数值显示界面,如图 6.8.2.2 所示。

将污泥浓度探头放入对应输入值的标液中,等待数据稳定后,按 Enter 键结 束校准,按 ESC 退出校准。如果校准成功则提示 success!,如果校准失败,则 提示 Fail!,校准值自动还原为初始值。

图 6.8.2.1 一点校准的校准值输入

图 6.8.2.2 一点校准数值显示界面

6.8.3 两点校准

选择两点校准功能,进入污泥浓度两点校准的第一个校准点校准值输入界 面,按 Enter 键进入两点校准第一点数据显示界面,如图 6.8.3.1 所示,此处第一 个校准点以 0 点为例。同一点校准,完成后按 Enter 键进入下一个校准点校准值 输入界面。此处以 100mg/L 为第二个校准点输入,如图 6.8.3.2。将污泥浓度探头 放入对应输入值的标液中,等待数据稳定后,按 Enter 完成校准,同一点校准,如 果校准成功,显示 Success!,如果校准失败显示 Fail!。

<u>s</u>	S	lu	dge	9						S1u	Idg	e		
2 - points					Firs	st Point		2 - points					Seco	nd Point
0	0	0	0	•	0	mg/L		0	1	0	0	•	0	mg/L
Enter:Select Up:+					Set Dow	up:Exit n:-	14	Enter:Select Up:+					Set: Down	up:Exit n:-

图 6.8.3.1 两点校准第一个校准值"0" 图 6.8.3.2 两点校准第二个校准值"100"

6.9 氨氮校准

6.9.1 校准选择

氨氮探头支持铵离子和 pH 校准, 铵离子校准有一点校准和两点校准, pH校准 为三点校准。通过校准功能选择菜单可以选择一点校准, 两点校准和 pH 校准。

6.9.2 一点校准

选择一点校准功能,按 Enter 进入 NH4+一点校准校准值输入界面,如图 6.9.2.1 所示,一点校准,建议设定的目标值为 1 mg/L, Enter/ESC 切换输入位置 和进入退出功能, Up/Down 为调输入数值。按 Enter 进入一点校准数据显示界面, 如图 6.9.2.2 所示。

将氨氮探头放入对应输入值的标液中,等待数据稳定后,按 Enter 完成校准,按 ESC 退出校准。如果校准成功则提示 success!,如果校准失败,则提示 Fail!,校准值自动还原为初始值。

NH4N							NH4N		
1 - point						6.	1 - point	1. 0mg/L	
0	0	0	1	•	0	mg/L	90.	7	
Enter:Select					Setu	p:Exit	Press Enter	Confirm	
Up:+					Down	:-	Enter:Select Up:+	Setup:Exit Down:-	

图 6.9.2.1 氨氮一点校准值输入

图 6.9.2.2 一点校准数据显示界面

6.9.3 两点校准

选择两点校准功能后,进入氨氮探头两点校准的第一个校准点输入,如图 6.9.3.1,此处第一个校准点以 1mg/L 为例。同一点校准,完成后按 Enter 键进入 氨氮两点校准的第二个校准值输入界面,以 10mg/L 为校准输入为例,如图 6.9.3.2 所示。将氨氮探头放入对应标液中,等待数据稳定后,按 Enter 完成校准,同一

点校准,如果校准成功,显示 Success!,如果校准失败显示 Fail!

两个校准点的标液最好是有 10 倍的梯度。

图 6.9.3.1 两点校准第一个校准点"1" 图 6.9.3.2 两点校准第二个校准点"10"

6.9.4 pH 校准

见 6.13 章节。

6.10 蓝绿藻校准

6.10.1 校准选择

蓝绿藻传感器只支持两点校准。

6.10.2 两点校准

进入蓝绿藻传感器两点校准的第一个校准点输入界面,如图 6.10.1 所示, 以 100cells/ml 点为例进行输入, Enter/ESC 切换输入位置和确认退出校准, Up/Down 调整输入校准值,按Enter 键确认进入两点校准的第一个数据显示界面, 如图 6.10.2 所示。

BGA		BGA	
2 - points	First Point	2 - point	100.0cs/mL
0001	0 0 cs/mL	120.00	
Enter:Select	Setup:Exit	Enter:Select	Setup:Exit
Up:+	Down:-	Up:+	Down:-

图 6.10.1 两点校准第一个校准点输入 图 6.10.2 第一个校准点数据显示

将蓝绿藻探头放入对应输入值的标液中,等待数据稳定后,按 Enter 进入下 一步,如需退出按 ESC 退出,按 Enter 后,进入蓝绿藻两点校准的第二个校准点 输入界面,如图 6.10.3 所示。蓝绿藻的第二个校准点以 54600cs/mL 为例,按 Enter 键进入第二个校准点数据界面,将探头放入对应的标准液体中,界面显示如图 6.10.4 所示,等待显示数据稳定后,按 Enter 完成校准,退出按 ESC,如果校准 成功则提示 success!,如果校准失败,则提示 Fail!,校准值自动还原为初始值。

图 6.10.3 两点校准第二个校准点输入

图 6.10.4 第二个校准点数据显示

6.11 水中油校准

6.11.1 校准选择

水中油传感器支持两种校准方式:一点校准和两点校准,可在菜单中选择。 6.11.2 一点校准

选择一点校准功能后,进入一点校准校准值输入界面,如图 6.11.2.1 所示。 以 100ppm 为例,按 Enter/ESC 为选择输入位置和进入退出功能,Up/Down 调整 输入数值。按 Enter 进入水中油一点校准显示界面,如图 6.11.2.2 所示。

OIW							OIW				
1 - point							1 - point	100. Oppm			
0	1	0	0	•	0	ppm	90	. 7			
Enter:Select Up:+					Setu Down	p:Exit :-	Press Ent Enter:Select Up:+	<mark>er Confirm</mark> Setup:Exit Down:-			

图 6.11.2.1 一点校准校准值输入

图 6.11.2.2 一点校准数据显示

将水中油传感器放入对应的液体中,等到数据稳定后,按 Enter 完成校准, ESC 退出校准,如果校准成功则提示 success!,如果校准失败,则提示 Fail!,校 准值自动还原为初始值。

6.11.3 两点校准

选择水中油校准中的两点校准后,首先进入水中油两点校准的第一个校准点的校准值输入界面,以零点为第一个校准点输入,如图 6.11.3.1 所示。同一点校准,完成后按按 Enter 进入下一个校准点的校准值输入界面,以 100ppm 为例,如图 6.11.3.2 所示。将探头放入对应标液中,等待数据显示稳定后,按 Enter 完成校准,同一点校准,如果成功,显示 Success!,否则显示 Fail!。

图 6.11.3.1 两点校准第一个校准值 "0" 图 6.11.3.2 第二个校准点数据 "100"

6.12 COD 校准

6.12.1 校准选择

COD 传感器支持两种校准方式,一点校准和两点校准,可在菜单中选择。

6.12.2 一点校准

选择一点校准后,进入一点校准校准值输入界面,如图 6.12.2.1 所示。以 100mg/L 为例,按 Enter/ESC 为选择输入位置和进入退出功能,Up/Down 调整输 入数值。按 Enter 进入 COD 一点校准显示界面,如图 6.12.2.2 所示。

图 6.12.2.1 一点校准时校准值输入 图 6.12.2.2 一点校准校准数据显示 将 COD 传感器放入对应的液体中,等待数据稳定后,按 Enter 完成一点校准, 如果校准成功则提示 success!, 如果校准失败,则提示 Fail!,校准值自动还原 为初始值。

6.12.3 两点校准

选择两点校准后,首先进入 COD 两点校准的第一个校准点输入,以零点为 第一个校准点输入,如图 6.12.3.1 所示。同一点校准,完成后按按 Enter 进入下一 个校准点的校准值输入界面,以 100mg/L 为例,如图 6.12.3.2 所示。将 COD 探 头放入对应标液中,等待数据显示稳定后,按 Enter 完成校准,同一点校准,如 果成功,显示 Success!,否则显示 Fail!

图 6.12.3.1 第一个校准点数据"0"

图 6.12.3.2 第二个校准点校准值"100"

6.13 pH 校准

6.13.1 校准选择

pH 传感器只支持3 点校准,且三个校准点标液需是固定的4.01,6.86 和 9.18。

选择三点校准后,进入三点校准的第一个校准点,如图 6.13.1 所示,等待数据稳定后,按 Enter 进入第二个校准点,将探头放入第二个校准标液 6.86 中,如图 6.13.2 所示,同样等待稳定后,按 Enter 进入第三个校准点,将探头放入第 三份标液中,如图 6.13.3 所示,等数据稳定后,按 Enter 完成校准,如果校准成功,则显示 Success,否则显示 Fail!。

图 6.13.1 pH 的第一个校准点

图 6.13.2 pH 的第二个校准点

图 6.13.3 pH 的第三个校准点

6.14 ORP 校准

ORP 不做用户校准。

七、4-20mA 设置

7.1 功能进入

在主菜单下,切换选择 4-20mA,进入 4-20mA 设置界面.

如图 7.1 所示,首先进入的是 4mA 对应设置界面。调整输入数值的正负值,通过 Enter 键和 ESC 键可以调整输入位置,Up/Down 可以调整输入值的大小。

图 7.1 4mA 对应设置界面 图 7.2 4-20mA 的 20mA 设置界面 当 4mA 输入完成后,进入如图 4-20mA 的 20mA 的设置界面,如图 7.2 所示。

如图 7.1 和 7.2 所示, 4-20mA 的默认设置是 4mA 对应为 0,20mA 对应为 20, 当连接不同探头时, 需要进行重新设置, 设置断电保存。

4-20mA 的设定需要在传感器的测量范围内设定,4mA 对应低值,20mA 对应高值,当设定超出范围时,如图 7.3 所示,将提示错误。

图 7.3 溶氧 4-20mA 设置对应 0 和 29mg/L 超出范围

如图 7.3 所示,当设定溶氧 4-20mA 对应 0 和 29mg/L 时,按 Enter 将无法完成设置,会提示 Out of Range。如果设定成功,则自动返回上一级菜单。

7.3 设置范围说明

4-20mA的设置都需要在可测量范围内设置,具体测量范围如下: 测量参数 测量范围 测量范围

溶氧传感器	0~20mg/L
盐度传感器	0~100ppt
电导传感器	低量程 0~5000uS/cm 高量程 0~100mS/cm
浊度传感器	0~1000NTU
叶绿素传感器	0~400ug/L
污泥浓度	0~4000mg/L
氨氮传感器	0~100mg/L / 0~10mg/L
蓝绿藻传感器	0~200000cells/mL
水中油传感器	$0^{\sim}50$ ppm
COD 传感器	0~375mg/L
pH 传感器	0~14
ORP 传感器	-999~999mV

八、盐度设置

8.1 功能进入

通过主菜单,切换选择 Salinity,可进入盐度调节菜单,断电保存。进入后会显示当前已设置的盐度值,如图 8.1 所示,默认盐度值为 Oppt。

	Γ	0		
Salinity				
0 0	6	•	0	ppt
Enter:Select				Setup:Exit
Up:+				Down:-

图 8.1 当前盐度值显示

8.2 操作说明

如图 8.1 所示, Enter/ESC 切换输入位置, Up/Down 调整输入数值。 按 Enter 完成输入,成功则显示 Success 后自动返回上一级菜单,失败则显 示 Fail,不返回。

九、警告设置

9.1 功能进入

通过主菜单,切换选择 Alarm,可以进入警告设置界面。

9.2 操作说明

如图 9.1 所示,首先进入的是警告下限值操作。可以调节正负值,按 Enter/ESC 切换输入位置,按 Up/Down 调整输入范围,下限值确认后,按 Enter 进入上限值 输入,上限值输入界面如图 9.2 所示,操作方式同上。

		D	0						D	00			
Alarm						L	Alarm						Н
+ 0	0	0	0	0	0	mg/I	+ 0	0	5	0	0	0	mg/L
Enter:Select Up:+					Se Do	tup:Exit wn:-	Enter:Select Up:+					Se Do	tup:Exit wn:-

图 9.1 警告值下限设定操作界面图 9.2 上限值输入界面

Alarm 的范围默认值是下限为 0, 上限为 5000, 当接入新的传感器, 需要重 新设定 Alarm 的范围,断电保存。

设定成功,则自动返回上一级菜单。

9.3 设置范围

报警值需要在传感器的测量范围内设定,同 4-20mA 的范围。

9.4 报警显示

如果当前测量值,小于警告值范围,则将出现如图 9.4 所示的下限提示。 如果当前测量值超出警告上限,则如图 9.5 所示,进行提示。

DO	Alarm L	DO	Alarm H
6.95	mg/L	6.9 5	mg/L
100.67	kPa	100.67	kPa
23.24	°C	23.24	$^{\circ}$ C

图 9.4 下限值超出警告显示

图 9.5 警告超出上限值提示

十、继电器设置

10.1 功能进入

通过主菜单,切换选择 Relay,可进入继电器功能设置。

10.2 操作说明

出厂继电器默认状态为 off。按 Cal 键调整功能选项,自动存储,继电器除 关闭外,还存在以下 4 种选项,如图 10.1~10.4 所示,分别为 alarm L, alarm H, alarm, timing.

D0		DO	<u>`</u>
Relay		Relay	
Relay No.1:	alarm L	Relay No.1:	alarm H
Relay No.2:	off	Relay No.2:	off
Enter:Select Cal:Switch Up:+	Setup:Exit Down:-	Enter:Select Cal:Switch Up:+	Setup:Exit Down:-

图 10.1 alarm L 测量超出下限警告功能 图 10.2 alarm H 测量超出上限警告功能

DO Relay		Relay DO	
Relay No.1:	alarm	Relay No.1:	timming
Relay No.2:	off	Relay No.2:	off
Enter:Select Cal:Switch Up:+	Setup:Exit Down:-	Enter:Select Cal:Switch Up:+	Setup:Exit Down:-

图 10.3 测量超出警告功能

Y610-B 变送器存在两路继电器,此处可以通过 Up/Down 切换上下继电器选择,可通过 Up/Down 切换到如图 10.5 进行第二路继电器设置。

图 10.5 第二路继电器设置

10.3 功能说明

Off: 继电器处于常闭状态

Alarm L: 当前继电器用于进行下限值警报,当测量值超出下限值时,继电器常开。

Alarm H: 当前继电器用于进行上限值警报,当测量值超出上限值时,继电器常开。

Alarm: 当前继电器用于进行上下限值警报,当测量值超出上下限值任何一个值时,继电器常开,否则常闭。

Timing: 设定默认为每 60 分钟开启一次,开启时间为 60 秒,当选定到 timing 选项时,按 Enter 进入 timing 时间设定界面,显示值为目前设定值,如图 10.3.5.1 所示。

图 10.3.5.1 timing 时间设定界面 图 10.3.5.2 设定 120 分钟开启一次,开启时长 6 分钟

如图 10.3.5.1 所示, Enter/ESC 切换输入位置, Up/Down 为调整数值按键, 当切换到如图 10.3.5.2 所示时,按 Enter 确认修改定时时间,自动返回上一级菜 单。

十一、恢复设置

通过主菜单,切换选择 Reset,按 Enter 进入恢复界面。

如图 11.1 此菜单下,包含以下功能的恢复,继电器,警告值,4-20mA,盐度,气压,传感器校准值,当产品未连接传感器时,校准选项不可选。

选择功能后,按 Enter 进行恢复,Up/Down 切换功能,Enter 后如果恢复成功,则显示 Success!,如果恢复失败,则显示 Fail!。

图 11.1 恢复菜单功能选项

十二、变送器对外输出

Online controller 还能接收来自上位机的 Modbus RTU 协议命令,输出传感器数据。(或者接入无线模块,组网通信)协议帧格式如下。

请求帧

获取测量值的请求帧格式如下:

定义	地址域	功能码	起始地址		寄存器	器数量	CRC		
字节	0	1	2	3	4	5	6	7	
内容	0x01	0x03	0x26	0x00	0x00	0x06	0xCE	0x80	

应答帧

变送器应答帧格式如下: 备注:数据 1、数据 2、温度值: 小端存储模式, 浮

点数。

定义	地址域	功能码	字节数		寄存器值		CI	RC
字节	0	1	2	3~6	7~10	11~14	15	16
内容	0x01	0x03	0x0C	数据 1	数据 2	温度值		

根据所接探头类型不同,数据 1 和数据 2 代表不同的值,具体如下:

探头类型	数据 1	数据 2
溶氧探头	溶氧值(mg/L)	饱和度(%)
COD 探头	COD 值(mg/L)	0
pH 探头	pH 值	mV 值
浊度探头	浊度(NTU)	0
电导探头	电导 (uS/cm)	0
叶绿素探头	叶绿素 (ug/L)	0
水中油探头	水中油 (ppm)	0
污泥浓度	污泥浓度(mg/L)	0
蓝绿藻	蓝绿藻值(cells/mL)	0
盐度	盐度值 (ppt)	0
氨氮	氨氮值(mg/L)	рН
ORP	ORP 值(mv)	0

比如说,温度值为 26.397℃,溶氧值为 4.801mg/L,饱和度值为 59.935%,

变送器应答帧如下:

定义	地址域	功能码	字节数		寄存器值		C	RC
字节	0	1	2	3~6	7~10	11~14	15	16
内容	0x01	0x03	0x0C	4.801	59.935	26.397	0x41	0XD7

其中温度值和溶氧值字节分布如下:

溶氧	值(mg	ı/L) (3-	~6)	饱和度(%)(7~10)				温度值(11~14)				
0xCB	0xA1	0x99	0x40	0x71	0xBD	0x6F	0x42	0x0E	0x2D	0xD3	0x41	

十三、按键功能列表

按键 长按/短按	功能
----------	----

SETUP/ESC	短按	进入主菜单/返回上级菜单;数据编辑时输入位置后退
CAL	短按	进入校准界面;Relay 菜单下切换继电器功能
UP	长按	切换溶氧单位显示
UP	短按	切换选项;数据编辑时调整数值
DOWN	长按	切换温度单位显示
DOWN	短按	切换选项;数据编辑时调整数值
ENTER	短按	确认操作;数据编辑时输入位置前进
UP+ENTER	短按	切换 COD/TOC

引言

尊敬的用户

非常感谢您购买河南绥净环保科技有限公司的盐度传感器。在您使用前,请详细 阅读本说明书,将对使用及维护本仪器有很大的帮助,并可避免由于操作及维护不当而 带来不必要 的麻烦。

请遵守本说明书操作规程及注意事项。

为确保本仪器所提供的售后保护有效,请不要使用本说明书规定以外的方法来使用和保 养本仪器。

由于不遵守本说明书中规定的注意事项,所引起的任何故障和损失均不在厂家的 保修范 围内,厂家亦不承担任何相关责任。请妥善保管好所有文件。如有疑问, 请联系我公司售后服务部门。

在收到仪器时,请小心打开包装,检查仪器及配件是否因运送而损坏,如有发现 损坏, 请联系我公司售后服务部门,并保留包装物,以便寄回处理。

当仪器发生故障,请勿自行修理,请联系我公司售后服务部门。

39

8 产品概述

绥净仪表推出新一代盐度传感器,采用国际领先的四电极技术,RS485 数字 接口,支持MODBUS 协议,环保型设计。新一代盐度传感器不仅精度更高,测量 范围更广,稳定性极佳。还具有独特的量大优势:一是彻底解决了高电导率测试时的 极化难题;二是解决了电极 污染造成读数不准的问题。

传感器特点:

0[~]80ppt,精度±1ppt RS485 输出,支持 Modbus,可开放通 讯协议0[~]50℃,防护等级 IP68,最大 压力 6bar 不会极化,可连续在线 使用量程极其宽广,应 用更广泛非常耐污染, 抗干扰能力强测量十分 稳定,精准度更高

8.1 产品简介

结构图**:** 外形尺寸 22x210 mm(Φ xL)

8.2 线缆定义

9 电源 供电电源必须是 DC 5[~]12V +/-5%, 电流<50mA

10 传感器电缆

4 wire AWG-24 或 AWG-26 shielding wire. OD=5mm

8.3 技术参数

名称			
型号	Y520-A		
量程范围	0~80ppt		
响应时间	<10 sec		
防护等级	IP68		
盐度精度	± 1 ppt		
电极材料	镍+316L/Ta2		
护套材料	PEEK		
温度范围	0 ~ 50°C		
传感器接口	支持RS-485, MODBUS 协议		
电源信息	DC 5~12V, 电流<50mA		
温度传感器	NTC		
传感器尺寸	22x210 mm(Φ xL)		
探头线缆长度	10 米 (默认),可定制		
校准	一点或两点校准		

注:1、以上技术参数均为实验室标液环境下数据;

2、传感器寿命和维护校准频率与实际现场工况有关。

9 安装

9.1 配置表

标准配置	数量	单位	备注
盐度传感器	1	支	
线缆	1	根	10m
小毛刷	1	个	

9.2 传感器安装

1、接线与供电

- 请勿利用传感器电缆吊装传感器!建议安装线缆保护套,以确保线缆供电和水密良好。
- 上电前一定确保线序及供电电压准确!

2、传感器安装

10 传感器需按电极朝下方向竖直安装、不可水平甚至电极朝上方向安装;

11 考虑水位的影响, 传感器需安装在最低水位线 30cm 以下(注: 电极暴露在空气中有损坏电极风险), 另建议安装深度不超过 2 米, 以便于后期拆卸维护等;

12 传感器需固定安装,避免水流等因素造成探头磕碰。

10 校准

10.1简述

校准方法: 使用 Smart PC 软件校准 详细操作请扫描右侧二维码 注: 若涉及到二次开发,请联系绥净技术人员。

10.2标液配置

10gNaCl 溶于 1L 去离子水中得 10ppt 30gNaCl 溶于 1L 去离子水中得 30ppt 50gNaCl 溶于 1L 去离子水中得 50ppt 80gNaCl 溶于 1L 去离子水中得 80ppt

11 维护日程和方法

11.1 维护周期

盐度探头有较强的抗污染能力,不会极化,不需要 频繁地进行清洗(除了 应用于粘性液体中时)。

维护任务	建议维护频率	
清洗传感器	每 30 天清洁一次	
校准传感器	根据主管部门所要求的维护日程进行	

11.2 维护方法

1、传感器表面清洁

用自来水清洗传感器的外表面,如果仍有碎屑残留,用湿润的软布进行擦拭, 对于一些顽固的污垢,可以在自来水中加入一些家用洗涤液来清洗;

2、传感器进出水孔

用棉签或软布进行擦拭,对于一些顽固污垢,可在自来水中加入家用洗涤液来清洗;

3、线缆检查

正常工作时线缆不应绷紧,否则容易使线缆内部电线断裂,引起传感器 不能正常工作;

4、检查传感器的外壳是否因腐蚀或其他原因受到损坏。

11.3 注意事项

探头中含有敏感的光学部件和电子部件。确保探头不要受到剧烈的机械撞击。 探头内部没有需要用户维护的部件。

12 常见问题解答

表 5-1 列出了氨氮传感器可能出现的问题以及解决办法,如果你的问题没有被列 出或者解决方案不能处理你的问题,请联系我们。

故障现象	可能的原因	解决方法
操作界面无法连接或 不显示测量结果	控制器与线缆连接出错	重新连接控制器和线缆
	线缆故障	请联系我们

表 5-1 常见问题列表

13 质保说明

本质量保证不包括下列情况:

11 由于不可抗力、自然灾害、社会动荡、战争(公布的或者未公布的) 、恐怖主义、 内战或 者任何政府强制所造成的损坏

12 由于使用不当、疏忽、事故或者不当应用和安装所造成的损坏

13 将货物运回绥净仪表的运费

14 质保范围内的部件或者产品加急或者特快运送的运费

15 在当地进行质保修理的差旅费

本质量保证包括了绥净仪表技关于其产品提供的质保的全部内容。

本质量保证构成了最终的、完全的和排它性的关于质量保证条款的声明, 没有人或者代理 商被授权以绥净仪表的名义来制订其它的质保。

如上所述的修理、更换或者返还货款等补救措施都是不违反本质量保证的特例情况,更换或者返还 货款等补救措施都是针对本公司的产品本身。基于严格的责任义务或者其它法律理论,不为由于产品缺陷 或是由于操作疏忽而导致的其他任何损坏承担责任,包括与这些情况存在因果关系的后续损坏的情况